\qquad

Follow the instructions for each question and show enough of your work so that I can follow your thought process. If I can't read your work, answer or there is no justification to a solution you will receive little or no credit!

1. Show that it is not possible to express a compact interval of real numbers as the pairwise disjoint union of a countable collection (having more than one member) of compact intervals.
2. Show that the arbitrary collection of Tychonoff spaces, with the product topology, is also Tychonoff.
3. Let X be a topological space. Prove that X is countable compact if and only if whenever $\left\{F_{n}\right\}$ is a decreasing sequence of nonempty closed subsets of X, the intersection

$$
\bigcap_{n=1}^{\infty} F_{n} \neq \emptyset .
$$

4. Let (X, \mathcal{A}) be a measurable space and let μ_{1}, μ_{2} be measures on (X, \mathcal{A}). Define

$$
\nu=\mu_{1}-\mu_{2} .
$$

If one of $\mu_{i}, i=1,2$, is finite, prove that ν is a signed measure on (X, \mathcal{A}).
5. Let ν be a signed measure on some measurable space. Prove that if E is any measurable set, then

$$
-\nu^{-}(E) \leq \nu(E) \leq \nu^{+}(E) \text { and }|\nu(E)| \leq|\nu|(E)
$$

6. Let η be the counting measure on \mathbb{Z}. Characterize the nonnegative real-valued functions that are integrable over \mathbb{Z} with respect to η and the value

$$
\int_{\mathbb{Z}} f d \eta
$$

7. Suppose f and g are nonnegative measurable functions on X for which f^{2} and g^{2} are integrable over X with respect to μ. Show that $f g$ is integrable over X with respect to μ.
8. Let $\nu: \mathcal{M} \rightarrow[0, \infty)$ be a finite additive set function. Show that if f is a bounded measurable function on X, then the integral of f over X with respect to $\nu, \int_{X} f d \nu$, can be defined so that

$$
\int_{X} \chi_{E} d \nu=\nu(E)
$$

if E is measurable and integration is linear, monotone, and additive over domains for bounded measurable functions.
9. Let \mathcal{S} be an algebra of subsets of a set X. We say that a function $\varphi: X \rightarrow \mathbb{R}$ is \mathcal{S}-simple provided

$$
\varphi=\sum_{k=1}^{n} a_{k} \chi_{A_{k}}
$$

where each $A_{k} \in \mathcal{S}$. Let μ be a premeasure on \mathcal{S} and $\bar{\mu}$ its Carathéodory extension. Given $\varepsilon>0$ and a function f that integrable over X with respect to $\bar{\mu}$, show there is an \mathcal{S}-simple function φ such that

$$
\int_{X}|f-\varphi| d \bar{\mu}<\varepsilon
$$

